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Abstract

A quaternion-based impedance control framework is pre-
sented which ensures geometric consistency for the execu-
tion of six-DOF interaction tasks. This is applied to coopera-
tive manipulation of an object by two robots. Both loose and
tight cooperative control schemes are designed, and the the-
oretical findings are validated in experiments ‘on a dual-robot
industrial setup.

1. Historical Overview and Introduction

Impedance control [1] is a well-established framework
to manage the interaction with the environment of an
object manipulated by a robotic system. A prescribed
dynamic behavior in terms of mass, damping and stiff-
ness can be imposed between end-effector displace-
ments and contact forces. According to this strategy,
an indirect force control is achieved which is effective
even when the end effector is in contact with an un-
structured environment [2].

The approach may yield some drawbacks for the ex-
ecution of six-DOF tasks since the rotational part of the
impedance is not well defined when using a minimal
representation of orientation. Representation singu-
larities occur if a minimal description of end-effector
orientation is used, e.g., with the operational space
framework [3]. Further, task geometric inconsistency
may arise due to dependence of the rotational stiffness
upon the actual object orientation. A spatial impedance
concept has been recently proposed based on an en-
ergy formulation using rotation matrices [4]. Based
on this approach, a class of geometrically meaningful
angle/axis representations to describe orientation dis-
placements has been introduced which comprises the
unit quaternion [5].

Whenever object manipulation requires the adoption
of more than a single robot, it is necessary to manage

cooperation between multiple robots. Cooperative ma-
nipulation constitutes an effective way to execute com-
plex robotic tasks. To this purpose, it is worth distin-
guishing between loose cooperation and tight coopera-
tion. The former is accomplished at the task planning
level [6, 7], e.g., in coordinated workcell tasks, assem-
bly. The latter, instead, is realized at both task planning
and control level [8, 9], e.g., in carrying heavy objects,
grasping. Solutions to the problem of object manipu-
lation include the symmetric formulation in [10], the
object level framework in [11] and the impedance con-
trol of internal forces in [12]. On the other hand, the
problem of object interaction with the environment has
been tackled in [13] and [14].

This paper is aimed at presenting a geometrically
consistent quaternion-based impedance control frame-
work and showing its potential in a dual-robot cooper-
ative manipulation context. Both loose and tight coop-
eration are considered. In the former the two robots are
independently controlled and cooperation is realized
only at the task planning level, whereas in the latter
the two robots are controlled in a coordinated fashion.
Experimental results on a dual-robot industrial setup
are discussed for a typical parts mating task and for a
task where a tightly grasped object interacts with the
environment.

2. Quaternion-Based Impedance

Consider a rigid object in contact with the environ-
ment. In order to describe the interaction, it is worth
defining a frame ¥, attached to the object; its origin
and orientation with respect to the base frame X are
characterized by the (3 x 1) position vector p, and the
(3 x 3) rotation matrix R,, respectively. Hereafter, a
superscript will denote the frame to which a quantity
is referred; when referred to the base frame, the super-
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script will be dropped.

Typically, a desired frame ¥, is assigned in terms
of p; and R,4. Further, a mechanical impedance can
be introduced which is aimed at imposing a suitable
dynamic behavior for the position and orientation dis-
placements between the desired frame ¥4 and a com-
pliant frame X characterized by p. and R.. The mu-
tual position between ¥; and X, can be described by
the position displacement vector

Apdc = P4 — P> 1

which has been referred to X.

The impedance equation is typically chosen so as to
impose a dynamic behavior for the position displace-
ment under a (3 x 1) force vector f, at the object, i.e.,

MPAi)dc + DPAi’dc + KPApdc = fo’ (2)

where M, D, and K, are (3 x 3) positive definite
matrices representing the mass, damping, and stiffness
characterizing the impedance.

The stiffness matrix K, can be decomposed as

K, =U,T,U,, ©)

where I, = diag{"p1,¥p2,Vp3} is the eigenvalue ma-
trix and U, = [up1 upz wup3] is the eigenvector
matrix. Considering a position displacement of length
A along the i-th eigenvector leads to

“

which represents an elastic force along the same u,;
axis. This implies that the translational stiffness matrix
can be expressed in terms of three parameters ~,; rep-
resenting the stiffness along three principal axes .y,
and in turn it allows the translational stiffness to be
specified in a consistent way with the task geome-
try [4].

In the classical six-DOF approaches, the rotational
part of the impedance equation is defined by extending
the formal expression of the equation written for the
translational part (2) and using a minimal representa-
tion of end-effector orientation in terms of three Euler
angles. By adopting an algebraic difference analogous
to that used for the position displacement in (1), the
orientation displacement can be computed as

A¢dc = ¢d - ¢c )]

where ¢, and ¢, denote the set of Euler angles corre-
sponding to R and R, respectively. Then, the rota-
tional part of the impedance at the end effector can be
defined as

M¢A$dc + D¢A¢dc + K¢A¢dc = TT(¢0)I"0,
6

KpApy, = Ypidup;

where My, Dy, Ky are positive definite matrices
describing the generalized inertia, rotational damping,
rotational stiffness, respectively, and p,, is the contact
moment at the end effector; all the above quantities
have been referred to the base frame, and T (¢,) is
the transformation matrix needed to express the mo-
ment in terms of an equivalent operational space quan-
tity, via a kineto-static duality concept based on the re-
lationship w, = T(¢,) ..

Notice that, differently from (2), the dynamic be-
havior for the rotational part is not merely determined
by the choice of the impedance parameters but it does
also depend on the orientation of the compliant frame
with respect to the base frame through the matrix
TT (¢.). Moreover, Equation (6) becomes ill-defined
in the neighborhood of a representation singularity; in
particular, at such a singularity, moment components
in the null space of T'T do not generate any contribu-
tion to the dynamics of the orientation displacement,
leading to a possible build-up of large values of con-
tact moment.

A simple inspection of the resulting elastic mo-
ment T~ " (¢p,) K y A¢p,4, from (6) reveals that, even in
the absence of representation singularities, a decompo-
sition of K 4 analogous to (3) does not allow the eigen-
vectors of Ky to represent the three principal axes of
the rotational stiffness. It can be concluded that the
property of task geometric consistency is lost.

A solution to this problem has been proposed in [5],
where a class of geometrically meaningful represen-
tations of the mutual orientation between the desired
frame and the compliant frame is considered. In de-
tail, the rotation matrix describing the orientation of 34
with respect to ¥, can be expressed in terms of the
(3 x 3) rotation matrix

‘Rq = °rac°ri, + (I — °r4.r],) cosdae  (7)
+S(°rdc)sin ge,

where an equivalent rotation by an angle ¥4, about an
axis with (3 x 1) unit vector °r 4. has been considered,
I is the (3 x 3) identity matrix, and S(-) is the (3 x 3)
skew-symmetric matrix operator performing the cross
product between two (3 x 1) vectors.

A convenient singularity-free representation of the
orientation displacement is given by the unit quater-
nion Q4. = {N4c, “€qc} defined as

9
Ndec = COS —;“— @)
‘€4 = sin ?;-—ccrdc. )

Note that {ng4., “€4.} and {—n4., — €4, } represent the
same orientation; also, X4 is aligned with ¥, as long
as 74 = +1 and ‘€4, = 0.



Let M., D., K. denote (3 x 3) positive definite ma-
trices representing the inertia, rotational damping, and
rotational stiffness. Then, the impedance equation for
the orientation displacement under a (3 x 1) moment
vector u, with respect to the origin of ¥, is given by

M AWy + D A°wy, + K.%€qe = °p,,  (10)
where A°wy. = ‘wg—Cw, is the (3 x 1) angular veloc-
ity vector of ¥, relative to ¥, and K, is an equivalent
stiffness which is related to K. as
K, =2 (nacI + S(°eac)) K. 11
The relationship between K, and K can be inves-
tigated by considering the decomposition of K. as
K.=UT.U], (12)
where I'c = diag{e1,7Ve2, 7Ve3} is the eigenvalue ma-
trix and U, = [ua U2 U] is the eigenvec-
tor matrix. An orientation displacement {cos(¥4./2),
sin(¥4./2)uc;} about the i-th eigenvector leads to
K f€gc = 7Yei sinVyc Uei (13)
which represents an elastic moment about the same
u,; axis. This implies that the rotational stiffness ma-
trix K. can be expressed in terms of three parame-
ters -y,; representing the stiffness about three principal
axes U;, and in turn it allows the rotational si ffness to
be specified in a consistent way with the task geometry.
Notice that, differently from (2), the rotational part
of the impedance equation (10) has been derived
in terms of quantities all referred to the compliant
frame X.; this allows the impedance behavior to be ef-
fectively expressed in terms of the relative orientation
of ¥, with respect to ., no matter what the absolute
orientation of ¥, with respect to ¥ is.
A generalization of the six-DOF quaternion-based
impedance concept to the case of a nondiagonal stiff-

ness which may be useful for certain interaction tasks
can be found in [15].

3. Loose Cooperative Control

Consider a system of two robots manipulating an ob-
ject. A cooperative control strategy can be termed
loose when the manipulation task is executed by con-
trolling the two robots in an independent fashion. Co-
operation is realized only at the task planning level.

A typical task requiring loose cooperative control is
constituted by mating rigid parts such as dual-robot as-
sembly in a workcell. The archetype is the classical
peg-in-hole, where one robot carries the peg and the
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other holds the hollow part. It should be clear that
the task is successfully executed provided that mating
forces are suitably reduced during the insertion so as to
avoid undesirable jamming and wedging. This concept
can be brought to fruition by resorting to special me-
chanical devices such as the Remote Center of Compli-
ance in [16] or the compliant end effectors in [17, 18].

An alternative strategy is to assign complementary
roles to the two robots, i.e., to operate one robot using
pure positional control while controlling the other so
as to achieve a programmable impedance at the end ef-
fector. In detail, the motion of the position controlled
robot is planned to match the nominal requirements of
the assigned task, while the active compliant behav-
ior imposed to the impedance controlled robot is de-
voted to mitigating the effects of imperfect knowledge
of the task geometry and unavoidable tracking errors.
The position controlled robot can be operated using the
standard industrial control unit, i.e., by exploiting the
set of motion planning instructions of the native pro-
gramming language.

On the other hand, assuming that an open con-
trol architecture is available for the other robot, an
impedance control is realized at the end-effector level
where the object is either the peg or the hollow part;
the end-effector frame of such a robot coincides with
the object frame. According to the well-known inverse
dynamics strategy [19], the joint driving torques for
the impedance-controlled robot —assumed to have six
joints— are chosen as

T=B(g)J () (ac—JT (,9)q)+n(q,§)+J" (q)(fltZ;
where q is the (6 x 1) vector of joint variables, B is
the (6 x 6) positive definite and symmetric inertia ma-
trix, n is the (6 x 1) vector of Coriolis, centrifugal and
gravity terms, J is the (6 x 6) nonsingular manipula-
tor geometric Jacobian matrix, and ko = [ f2 pT|T
is the (6 x 1) vector of generalized forces acting on
the object. Moreover, a, = [al a7 |T in (14) is the
(6 x 1) vector of resolved acceleration at the end effec-
tor which is designed to match the desired impedance
in (2) and (10), i.e.,

15)
(16)

ap = D+ kVPAi)co + kPPApco
a; = W+ kveAweo + kpe€co

where Ap,, = p, — P, is the position error between
the origins of X, and ¥,,, while €, is the vector part of
the quaternion expressing the orientation error between
Y. and ¥,; Aw., = w, — W, is the relative angular
velocity. The translational and rotational impedance
equations (2) and (10) are integrated, with input f,
and p,, to compute P, and w, p. and w., and then
p, and Q. via the quaternion propagation [20].
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Figure 1: Six-DOF impedance control with inner position and orientation loops.

Further, kv, kpp in (15) and kv, kp. in (16) are
suitable positive feedback gains characterizing inner
position and orientation loops, which can be set inde-
pendently of the impedance parameters so as to pro-
vide accurate position tracking and good robustness to
unmodeled dynamics and external disturbances.

A block diagram illustrating the overall impedance
control scheme is sketched in Fig. 1. If desired, in
the case of a redundant manipulator, a redundancy res-
olution technique can be nicely incorporated into the
scheme by resorting to a dynamically consistent pseu-
doinverse of the Jacobian, as discussed in [21].

4. Tight Cooperative Control

A cooperative control strategy can be termed tight
when the manipulation task is executed by controlling
the two robots in a coordinated fashion. Cooperation is
realized not only at the task planning level, but also at
the control level. This is the typical task of two robots
whose end effectors tightly grasp a commonly held
rigid object, thus creating a closed-kinematic chain. In
such a case, the object motion must be related to the
motions of the end effectors of the two robots. This
can be done by resorting to the task-oriented formula-
tion for coordinated motion of dual-robot systems de-
veloped in [22].

Consider a system of two manipulators. For each
manipulator (k = 1,2) let X4 denote a frame at-
tached to the end effector; its origin and orientation
are characterized by the (3 x 1) position vector p; and
the (3 x 3) rotation matrix Ry, respectively. Then,
Qi = {nx,€x} represents the unit quaternion corre-
sponding to Rj. Let also vy = [p; w]|T be the
(6 x 1) end-effector (linear and angular) velocity vec-
tor. All the quantities are expressed in the common
base frame .

The object position can be defined as

1
P, = 5(?1 +p,), W)

while the rotation matrix defining the orientation of ¥,
is given by

R, = Ri'R('r31,921/2), (18)

where 175; and 9, are respectively the unit vector and

the angle that realize the rotation described by

'R, = RR, (19)

and !R(172;,921/2) is the rotation matrix corre-
sponding to a rotation of ¥2; /2 about the axis 1rj;.
Then the absolute orientation can be expressed as

Q, = 0 * {cos %,Sin %—‘11‘21} (20)

where Q, is the unit quaternion corresponding to R,
and “*” denotes the quaternion product [20]; the sec-
ond factor on the right-hand side of (20) is the unit
quaternion extracted from ! R(1ry;, 921 /2).

From (17) and (18), the object linear velocity p, and

angular velocity w, can be expressed as
1
vV, = 5('01 + v3) @2n
where v, = [pT wI]T.

Let f, and p; (k = 1,2) respectively denote the
(3 x 1) end-effector force and moment vectors for ei-
ther manipulator. Then, according to the kineto-statics
duality concept [10] applied to (21), the object force
and moment can be expressed as

ho, = hy + hs 22)

where hy = [fi wuf]Tandh, =[fF uT]T.
In order to fully describe a coordinated motion, the
position and orientation of one manipulator relative to



the other is also of concern. The mutual position be-
tween the two end effectors is defined as the vector

Apy =py =Py (23)

The mutual orientation between the two end effectors
is defined with reference to ¥, in terms of the rotation
matrix ! Ry, and then in terms of the quaternion prod-
uct

Qn = Q7' % Qy, (24)
where Q7! = {n;,—€;} is the unit quaternion corre-
sponding to err.

From (23) and (19), the mutual velocity can be ex-
pressed as
(25)

A control strategy for tight cooperative manipulation
of an object interacting with the environment can be
devised as follows. Two individual controllers are de-
veloped which guarantee tracking of a reference end-
effector position p, , and orientation Q. , as well as
of a reference end-effector velocity v, (K = 1,2).
Such a reference is generated with a twofold objective;
namely, realizing an impedance behavior at the object
level, while assigning a mutual position and orientation
between the two end effectors that is compatible with
the object geometry.

The first objective can be fulfilled as follows. Let
the desired object position p, and orientation Q4 (ex-
tracted from R;) be assigned with the associated linear
and angular velocities and accelerations. Also, the ob-
ject force and moment can be computed from (22) with
the end-effector forces and moments available from the
wrist force/torque sensors. Then, the translational and
rotational impedance equations (2) and (10) are inte-
grated, with input f, and p,, to compute p, and w,,
P. and w,, and then p, and Q.. via the quaternion prop-
agation [20].

The second objective can be fulfilled by assign-
ing a reference mutual position Ap,. ,; and orienta-
tion Q2. In particular, Ap,. 5, and Q21 are taken as
constant and equal to the initial values of Ap,; in (23)
and Q2; extracted from (19), respectively, that can be
computed via the direct kinematics of the two manipu-
lators.

The two objectives are combined by choosing the
reference position and orientation for the two end ef-
fectors so as to satisfy (17), (23), (20), (24), i.e.,

A’U21 = vy — V).

P, =D~ %APT,ZI (26)
Pr2 =P+ %Aprﬂl 27
Qr1 = Qe+ {cos -"7431 —sin "'j‘ lr,,zl} (28)
Qr2 = Qr1* Dr21. (29)
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Further, the reference velocities for the two end ef-
fectors are chosen as

(30)

Vr1 = U — §A'vr,2l

Vr2 = Ve + ‘;‘A‘Ur,m (€2))
where v, = [p. wT|T. Then, the reference accel-
erations can be computed via a time derivative of the
terms in (30), (31).

The above reference trajectories can be tracked by
resorting to an inverse dynamics strategy. The joint
driving torques for the two robots can be chosen as
(k=1,2)

Tk = Bk(‘lk)JI:I(‘Ik)(ak - Jk(‘lm‘ik)f]k)(?’z)
+nk(qr, 4x) + Tk (@) e,

where g, is the (6 x 1) vector of joint variables, B
is the (6 x 6) symmetric positive definite inertia ma-
trix, ny is the (6 x 1) vector of Coriolis, centrifugal
and gravity torques, and J is the (6 x 6) (nonsingu-
lar) Jacobian matrix. Further in (32), a; is a new con-
trol input which can be chosen as ay = [a;f, E az e )T
where a, ; and a.  are designed so as to ensure track-
ing of p,. ;, and Q; ., as well as of vk, i.e.,

Gpk = Pr i+ kvpAp, gk + kppAp g (33)
Qe k= Wrk + kveAwr ik + kpe R e ik (34)

where Ap,. xr = Prx — P> ke, rr is the vector part
of Qrkk = Q' * Qrkr and Awy k= Wrp — Wy It
is worth remarking that kv p, kpp in (33) and ky., kp.
in (34) are suitable positive feedback gains character-
izing inner position and orientation loops which work
as in the scheme of Fig. 1.

5. [Experiments

The laboratory setup consists of two industrial robots
having a six-revolute-joint anthropomorphic geome-
try with nonnull shoulder and elbow offsets and non-
spherical wrist. One robot is mounted on a sliding
track, providing an extra prismatic joint (Fig. 2).

The joints are actuated by brushless motors via gear
trains; shaft absolute resolvers provide motor position
measurements. Each robot can be controlled either in
the standard industrial mode, or in the open mode. In
the latter case, the control unit is connected to a PC
Pentium, which is in charge of computing the con-
trol algorithm and passing the references to the current
servos through the communication link at 1 ms sam-
pling time. Joint velocities are reconstructed through
numerical differentiation of joint position readings. A
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Figure 2: Dual-robot setup available in the lab.

six-axis force/torque sensor ATI FT 130/10 with force
range of £130 N and torque range of £10 Nm is
mounted at the wrist of each robot manipulator. The
sensors are connected to the PC by parallel interface
boards which can provide readings of six components
of generalized force at 1 ms.

5.1. Loose cooperation

The first experiment is devoted to testing loose coop-
erative control for a parts mating task. The seven-joint
manipulator is assumed to carry the peg while the six-
joint manipulator is assumed to hold the hollow part.

mating force

[N]
(=]

-50

0 5 10
[s]
mating moment
5
— Y. z
E
z 0
- X
-5
0 5 10

Figure 3: Time history of mating force and moment.

The task is planned on the seven-joint manipula-
tor using the standard industrial control unit. From a
given posture a joint space motion is commanded to

reach a suitable intermediate posture which facilitates
the subsequent phases of the task. Then, a Cartesian
space motion along a straight-line path is commanded
to drive the tip of the peg to a position proximal to the
mouth of the hole and align the approach axis of the
peg with the axis of the hole, as accurately as possible.
Finally, a straight-line motion along the approach axis
—typically at a reduced speed with respect to the pre-
vious phase-— is commanded to realize the insertion.

The six-joint manipulator is controlled using the
open control mode so that the object (hollow part)
behaves as a mechanical impedance; the force/torque
sensor is mounted at the wrist.

The peg is a wooden cylinder of 17 mm diameter
and 80 mm height, while the other part is a wooden
block with a hole of 18 mm diameter and 70 mm depth;
that is, a 0.5 mm radial clearance is present during the
insertion.

An insertion task is programmed in terms of a
planned motion for the seven-joint manipulator requir-
ing a displacement of 90 mm along the end-effector
approach axis, so as to get a 20 mm overshoot beyond
the bottom of the hole. The proximate location has
been chosen so as to introduce an intentional misalign-
ment of 3 deg between the peg and hole axes.

The six-joint manipulator is impedance-controlled
so that the origin of %, is located 95 mm beyond the
bottom of the hole along its axis. The parameters of
the impedance in (2), (10) have been set to M, =
diag{15,40,15}, D, = diag{300, 950,300}, K, =
diag{400, 1300,400} for the translational part, and
M, = diag{9,9,9}, D. = diag{13.5,13.5,13.5},
K. = diag{1,1,1} for the rotational part. The feed-
back gains in (15), (16) have been set to kv, = 70,
kpp = 2025 for the position loop, and kye = 70,
kp. = 5000 for the orientation loop, respectively.

The results are illustrated in Fig. 3 in terms of the
time history of the three components of mating force
and moment. Remarkably, the values of force and mo-
ment keep limited despite of the incorrect task plan-
ning. At steady state, residual values of force and mo-
ment can be observed which are obviously caused by
the planned misalignment and overshoot.

5.2. Tight cooperation

The second experiment is devoted to testing tight co-
operative control. The two robot end effectors tightly
grasp the ends of a wooden bar of 1 m length. At the
center of the bar is fixed a steel stick with a wooden
disk of 5.5 cm radius at its tip.

The environment is constituted by a cardboard box;
the translational stiffness at the contact between the



disk and the surface is of the order of 5000 N/m, while
the rotational stiffness for small angles is of the order
of 15 Nm/rad.

The task in the experiment consists in taking the disk
in contact with the surface; that is placed at an un-
known distance with an angle of unknown magnitude.
The origin of X, is required to make a desired mo-
tion along a straight line with a vertical displacement
of —0.275 m along the Z-axis of ¥;. The trajectory
along the path is generated according to a Sth-order
interpolating polynomial with null initial and final ve-
locities and accelerations, and a duration of 6 s. The
desired orientation of the object frame is required to
remain constant.

The parameters of the translational part of the
impedance equation (2) have been set to M, =
diag{30, 30,30}, D, = diag{555,555,555}, K, =
diag{1300, 1300, 1300}, while the parameters of
the rotational part of the impedance equation (10)
have been set to M, = diag{10,2,10}, D, =
diag{35, 20,35}, K. = diag{20,8,20}. Notice that
the stiffness matrices have been chosen so as to ensure
a compliant behavior (limited values of contact force
and moment) during the contact, while the damping
matrices have been chosen so as to guarantee a well—
damped behavior.

The feedback gains in (33), (34) have been set to
kvp = 65, kp, = 1800 for the position loop, and
kve = 65, kpe = 3600 for the orientation loop, re-
spectively. Notice that these values differ from those
for the first experiments because the sampling time had
to be increased to 2 ms in order to synchronize the two
robot control units.

From Fig. 4, after the contact, the component along
the Z-axis of the position displacement between the
desired frame ¥; and the object frame X,, expressed
in X, significantly deviates from zero, as expected; a
smaller displacement can also be seen for the compo-
nent along the X -axis, due to contact friction. As for
the orientation displacement between ¥, and ¥4, ex-
pressed in ¥4, only the component along the Y -axis
significantly deviates from zero since the object frame
has to rotate about the Y-axis of ¥4 in order to comply
with the surface after the contact.

From Fig. 5, in view of the imposed task, a prevail-
ing component of the contact force can be observed
along the Z-axis after the contact, while a signifi-
cant component along the X -axis arises, correspond-
ing to the above position displacement. As for the
contact moment, the only nonnegligible component is
that along the Y -axis of X4, which corresponds to the
above orientation displacement. It can be recognized
that all the above quantities reach constant steady-state
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values after the desired motion is stopped. The oscil-
lations on the force and moment can be ascribed to the
effects of the commonly held object on the measure-
ments.

6. Conclusion and Perspectives

The problem of cooperative manipulation of an object
by a dual-robot system has been successfully tackled
by resorting to a geometrically consistent impedance
control framework where orientation displacements
and tracking errors have been expressed in terms of
unit quaternions. Experimental validation on a dual-
robot industrial setup for a parts mating task and for a
task where a tightly grasped object is in contact with a
compliant surface has been provided.

The presented results accord with the current trends
in the European robotics industry which have featured
realization of six-DOF manual devices for intuitive
robot programming, resort to model-based dynamic
control techniques, and development of open control
architectures for on-line sensory feedback. Foreseen
developments for industrial setups may include manip-
ulation of flexible objects, integration of visual feed-
back, and low-cost emulation of manipulation in mi-
crogravity, e.g., free-floating robots, free-flying ob-
jects.

It is conjectured that future research efforts will also
be addressed toward the application of impedance con-
trol and cooperative manipulation concepts to haptic
devices, interaction control of lightweight and redun-
dant robots, and control of vehicle-manipulator sys-
tems.
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