Xilink Vivado » History » Revision 93
Revision 92 (Frédéric Blanc, 2023-12-07 10:05) → Revision 93/94 (Frédéric Blanc, 2023-12-07 10:07)
h1. Xilink Vivado {{toc}} WIKI principal [[Wiki]] h2. installation Ubuntu 20.04 sur le site de xilinx telecharger: https://www.xilinx.com/support/download.html Xilinx Unified Installer 2020.1: Linux Self Extracting Web Installer *en root* <pre><code class="shell"> sudo bash export XILINXD_LICENSE_FILE=2100@flexalter.laas.fr chmod +x Xilinx_Unified_2020.1_0602_1208_Lin64.bin sudo ./Xilinx_Unified_2020.1_0602_1208_Lin64.bin </code></pre> echo $XILINXD_LICENSE_FILE 2100@flexalter.laas.fr https://danielmangum.com/posts/vivado-2020-x-ubuntu-20-04/ h2. installation Windows h3. Vivado 2022.2 Windows 64-bit: Run the settings64.bat from the Vivado/<version> directory On Windows, click Start > All Programs > Xilinx Design Tools > Vivado 2022.2 > Vivado 2022.2 Tcl Shell to launch the Vivado Design Suite Tcl shell. <pre><code class="shell"> dir D:\Public\RedPitaya-FPGA vivado -source red_pitaya_vivado_project_Z10.tcl -tclargs v0.94 </code></pre> !clipboard-202304201305-exdsl.png! We recommend Vivado 2020.1 h3. Vivado 2020.1 h2. Création d'un nouveau projet Create a new project with Vivado. !clipboard-202306070934-1ikrj.png! *Select the device xc7z010clg400-1* Add the constraint *redpitaya.xdc* redpitaya.xdc . Create a new Block Design !clipboard-202306070939-6delu.png! *ERROR: Could not find a top module* solution Create an HDL Wrapper. !clipboard-202306201313-n0s0q.png! h3. source source: https://github.com/lvillasen/RedPitaya-Hello-World Clone the repositiry Create a new project with Vivado. !clipboard-202306070934-1ikrj.png! *Select the device xc7z010clg400-1* Add the constraint *redpitaya.xdc* . Create a new Block Design !clipboard-202306070939-6delu.png! Add the IP called ZYNQ7 Processing System from the menu and Run Block Automation with default options. Add Module counter.v from the menu. clic doit !clipboard-202304261446-zpxnx.png! Add a Binary Counter from thr Add IP menu. Add a port called led_o with components from 7 down to 0. !clipboard-202304261452-qlhno.png! connect !clipboard-202304261515-hhbvn.png! From the menu click on Validate Design In 'Sources' go to 'IP Sources' right-click on 'project1' and select 'Create HDL Wraper' !clipboard-202304261503-3iuu2.png! Proceed to run Synthesis, Implementation and Bitstream Generation Find the bitstream file (you may use the command 'find . -name *bit') Transfer the bitstream file (*.bit) to the Red Pitaya (you may use *sftp root@rp-ip and put *.bit) clic doit !clipboard-202304261446-zpxnx.png! Tcl Console <pre><code class="shell"> cd d:/Public/RedPitaya-FPGA/prj/Examples/Led_blink source D:/Public/RedPitaya-FPGA/prj/Examples/Led_blink/make_project.tcl </code></pre> !clipboard-202304251008-te1ah.png! pour éviter cette erreur copier le dossier core dans ../tmp/ attachment:cores.zip h4. Bitstream le Bitstream ce trouve dans le dossier /.../RedPitaya/fpga/<project...>/<project...>.runs/impl_1 !clipboard-202304251107-19zhk.png! le fichier bitstream doit être remplacer le fichier /dev/xdevcfg *rp-ip 140.93.64.197* Transfer the bitstream file (*.bit) to the Red Pitaya (you may use *sftp root@rp-ip and put *.bit) Connect to the RedPitaya (ssh root@rp-ip) Program the FPGA with the command: *cat file_name.bit > /dev/xdevcfg* h2. GPIO h3. Console TCL utilisation des exemples https://github.com/RedPitaya/RedPitaya-FPGA !clipboard-202306021352-vc13m.png! utiliser les commandes suivante dans vivado console TCL <pre><code class="shell"> cd /tools/redpitaya/RedPitaya-FPGA-master/prj/Examples source make_project.tcl </code></pre> cela va ouvrir le projet complet de Led_Blink h3. GPIO !clipboard-202306071537-n2vfw.png! connecteur E1 exp_n_tri_io (OUT) exp_p_tri_io (IN) exp_n_tri_io[1.1] correspond a DIO1_N !clipboard-202306081407-xqky7.png! !clipboard-202306081409-vulz6.png! exemple de slice pour extraire du vecteur exp_p_tri_io[7.0] le scalaire exp_p_tri_io[3.3] qui correspond au GPIO DIO3_P du connecteur E1 Slice pour démultiplexer le vecteur Concat pour multiplexer h4. bidirectional h5. IOBUF !clipboard-202310231532-idfoo.png! https://docs.xilinx.com/r/en-US/ug1344-versal-architecture-libraries/IBUFDS_DIFF_OUT_IBUFDISABLE h5. Utility Buffer (seulement pour les horloges) https://www.xilinx.com/products/intellectual-property/util_ds_buf.html#documentation h5. Modification du fichier de contraite <pre><code class="shell"> ### set_property PACKAGE_PIN M14 [get_ports {exp_p_tri_io[7]}] set_property PACKAGE_PIN M15 [get_ports {exp_n_tri_io[7]}] ### IN set_property IOSTANDARD LVCMOS33 [get_ports {exp_p_in7[*]}] set_property SLEW FAST [get_ports {exp_p_in7[*]}] set_property DRIVE 8 [get_ports {exp_p_in7[*]}] set_property PULLTYPE PULLUP [get_ports {exp_p_in7[*]}] set_property PACKAGE_PIN M14 [get_ports {exp_p_in7[0]}] </code></pre> h3. FIFO !clipboard-202306221115-rthjy.png! IP FIFO generator *IN* !clipboard-202306151112-equbx.png! *OUT* !clipboard-202306151112-gvamj.png! h3. Shift Register !clipboard-202307041436-0ex9q.png! h3. Block Memory Generator !clipboard-202307041437-3fhkj.png! h3. Clock le mode auto ne détecte pas le 125MHz(FCLK_CLK0) mais semble prendre 50MHz, d'ou une erreur de x2.5 (overcloking) !clipboard-202310301446-afoxm.png! parametre a modifier dans le zynq pour avoir la bonne fréquence 125MHz(FCLK_CLK0) !clipboard-202310301443-qm7dq.png! h3. Bascule D flip-flop !clipboard-202310301320-froal.png! util ff h3. PULSE !clipboard-202310301452-mrz0e.png! bascule D en mode FDCE, wizard clock 400Mhz bus par défaul 50Mhz (125MHz réel) h2. RAM voir tuto document:"tuto vivado memoire partagé CPU-FPGA" https://forum.redpitaya.com/viewtopic.php?t=1795 !clipboard-202311070920-og7mi.png! !clipboard-202311061559-umyvt.png! https://forum.redpitaya.com/viewtopic.php?t=1675 https://www.fpgadeveloper.com/2014/08/using-the-axi-dma-in-vivado.html/ How to control AXI DMA and/or BRAM cores in a ZYNQ https://electronics.stackexchange.com/questions/482233/how-to-control-axi-dma-and-or-bram-cores-in-a-zynq tuto a verifier https://community.element14.com/challenges-projects/design-challenges/pathtoprogrammable/b/blog/posts/controlling-led-brightness-by-pwm-on-minized https://community.element14.com/challenges-projects/design-challenges/pathtoprogrammable/b/blog/posts/path-to-programmable---lab-8---pwm-controller h3. tuto Web https://github.com/lvillasen/RedPitaya-Hello-World https://redpitaya.readthedocs.io/en/latest/developerGuide/software/build/fpga/fpga.html https://antonpotocnik.com/?p=487360 https://easytp.cnam.fr/alexandre/index_fichiers/support/zynq_cours_tp_vivado_zc702.pdf http://jmfriedt.free.fr/redpitaya.pdf http://staff.ltam.lu/feljc/electronics/redpitaya/RedPitayaScriptingSummary_1.pdf RAM https://community.element14.com/technologies/fpga-group/b/blog/posts/learning-xilinx-zynq-use-ram-design-for-altera-cyclone-on-vivado-and-pynq https://elinux.org/Connect_a_ARM_Microcontroller_to_a_FPGA_using_its_Extended_Memory_Interface_%28EMI%29 http://islab.soe.uoguelph.ca/sareibi/TEACHING_dr/XILINX_VIVADO_dr/HwSw_dr/VivadoEmbeddedZyncTutorial.pdf https://www.fpgadeveloper.com/2014/08/using-the-axi-dma-in-vivado.html/